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Abstract

Environmental issues during and after extraction are a major issue in contempo-
rary exhaustible resource production. Production operation deteriorates the state
of the environment and is a source of possibly harmful emissions. After the extrac-
tion has ceased, the site is in need of reclamation and clean-up. This paper analyses
the last two stages of exhaustible resource production: extraction and site recla-
mation decisions. The socially optimal regulation is investigated, and it is found
that a pollution tax, a shut-down date and a requirement for the firm to deposit
funds for costly reclamation can be used to incentivize socially optimal extraction
of the resource. It is also found that the firm can be required to pay the monies
to a reclamation trust at the beginning of the extraction operation, which protects
the tax payers from the possible insolvency of the firm who tries to avoid paying
for the reclamation.
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1 Introduction

Exhaustible resource producers are in principle required to pay the costs related to site

reclamation that occurs after the production has shut-down. The purpose of site recla-

mation operations is to clean-up the site and return it to alternative uses. The current

problem is that the required payment is often set too low, and therefore the reclamation

operation might be underfunded and sub-optimal from the social point of view. This

has not gone unnoticed in newspapers around the world, including the United King-

dom (Monbiot, 2015), Australia (Seccombe, 2014), the United States (Preston, 2017)
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and Canada (Hoekstra, 2017).1 Regarding the low bonding requirements in Canada, the

Energy and Mines Minister of British Columbia Bill Bennett stated in 2017 that

”We are going to have to establish some concrete, specific, measurable

objectives and principles or parameters - whatever you want to call it - on

how do we actually assess the amount of financial security we need to have

full assurance for the taxpayer.”

The objective of this paper is to formalize this need as an optimization model with

resource extraction decision followed by site reclamation and clean-up and to investigate

the needed regulation in the form of a pollution tax and a reclamation payment.

Site reclamation and externalities related to the environment are relevant for almost

any exhaustible resource production. Extracting an exhaustible resource such as oil,

gas or minerals from the ground requires moving large quantities of material, and the

refinement of the end product produces wastes. In Canada, most of the oil reserves are

in tar sands (oil sands) where the oil is often obtained by extracting and refining the

bitumen found in sandstone. The resource is extracted by surface mining, which causes

loss of land and biodiversity. In addition, refining oil generates wastes, which are stored

in the constructed tailings ponds. After the extraction site has been shut-down, these

tailings ponds remain unless suitable reclamation operations are conducted at the site.

The problem is that the tailings ponds contain contaminants and represent a hazard to

the environment and to the public health (Heyes et al., 2018).

In the U.S, shale oil and gas (tight oil and gas) extraction using hydraulic fractur-

ing and horizontal drilling is a source of contaminants such as uranium, lead, salt and

methane. The environmental problems remain after shut-down unless reclamation is con-

ducted. This is also true for hard rock mining, in which the main environmental problem

is acid mine drainage (AMD), that is, the flow of toxic substances from the site that

have been released by acidic waters (Dold, 2014). In modern mining, large quantities of

waste rocks and tailings are produced, and this is a costly challenge for eventual mine

1Different types of instruments, such as bonds and trust payments, are used in an attempt to in-
centivize reclamation. The required payments are often insufficient to cover the estimated costs. For
example in British Columbia, the cost estimate is over one billion dollars higher than the collected
securities (Hoekstra, 2017).
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area reclamation (Mudd, 2010). A particularly harmful method of surface mining is the

so-called mountaintop mining: Coal seams are extracted by removing the top of a moun-

tain or a hill and by dumping of spoils to adjacent streams and rivers, which results in

environmental impacts and possible health issues (Palmer et al., 2010).

Research questions and the model. In some of the above examples the environmental

problems occur during and after the extraction of the resource. In others, as with AMD,

the environmental problems manifest mainly after the extraction operation has been

shut-down (Dold, 2014). The purpose of this study is to model the socially optimal

extraction of the resource and the costly reclamation and clean-up of the site, and to

analyse the regulation needed to internalize the externality. The research questions are:

1. If the reclamation operation is financed using a reclamation trust, how large is the

optimal deposit by the producer to the reclamation trust? 2. What is the optimal tax on

pollution generation? 3. When should the extraction operation be shut-down? 4. Should

there be any regulation regarding the producer’s payments, that is, does it matter when

the producer pays the monies?

These questions are investigated in a two-stage model. During the extraction stage,

the socially optimal extraction rate and the shut-down date are chosen. At this stage, the

model is analysed under multiple cost structures, which all have been applied to describe

the extraction technology. The extraction model itself is used to describe AMD, in which

the pollution stock is built during the extraction stage, but which causes damages only

after shut-down. The extraction model is also analysed in the more general setting with

a more general pollution stock dynamics including natural cleaning processes during the

extraction stage and with a stock that causes damages during the extraction stage. After

the extraction stage, the reclamation stage begins and the site is optimally reclaimed.

The pollution stock causes damages during this stage and the reclamation is costly. To

implement the socially optimal allocation, the regulator sets a time-dependent pollution

tax defined from the beginning of the extraction operation until the optimal shut-down

date and a requirement that the producer pays the eventual reclamation costs by de-

positing sufficient amount of money to a reclamation trust.2 These monies the producer

2As the tax is defined on the socially optimal extraction interval and the reclamation payment is
lump-sum, it can also be said that there is only one instrument: a time-dependent tax with a lump-sum

3



is assumed to transfer to the trust from its operational profits.

Contribution to the literature. The study contributes to the literature of polluting

exhaustible resources extraction by analysing optimal regulation in a two-stage model.

The model is ”a full description” of the last two stages of contemporary exhaustible

resource exploitation, namely of extraction and reclamation.3 The study is related to

the literature on optimal use of exhaustible resources and to the literature on optimal

environmental policy applied to polluting exhaustible resources with a specific focus on

mining. In contemporary exhaustible resource extraction environmental externalities play

a major role.4 In general, extraction produces a pollution stock as a side-product, which

causes damages during and after extraction.

Recently, the literature has focused on the reclamation of the extraction site (or on

the clean-up of the pollution stock) after the extraction operation has been shutdown.5

Sullivan and Amacher (2009) analyse the socially optimal reclamation decision between

forestry and grassland options and Lappi (2018) argues that it may be socially optimal

to delay the reclamation of the extraction site, but neither paper considers the pollution

generation or the optimal extraction of the resource that ultimately cause the reclamation

problem. This important contribution is made by Yang and Davis (2018), who analyse

the optimal regulation of a polluting exhaustible resource producer who must be given

incentives to reclaim the site after the extraction has ended. The pollution stock is taken

component.
3Exploration and discovery are the first stages of the exploitation process, but as environmental issues

and site reclamation are currently important, and because of the logical process of thinking optimality
from the final stage backwards, this study aims to partly complete the picture of optimal use of polluting
exhaustible resources by investigating the last two stages of exploitation. The theoretical literature on
exhaustible resource extraction is vast, and it includes the early studies on the optimal use of exhaustible
resources (Dasgupta and Heal, 1974; Hartwick, 1978), on exploration (Pindyck, 1978) and on imperfect
competition (Stiglitz, 1976; Salant, 1976; Pindyck, 1987). The literature has expanded along these lines
and in many others. For example the literature on mining has investigated the optimal capacity choice
(Campbell, 1980; Lozada, 1993; Cairns, 2001; Holland, 2003).

4One strand of literature along this line includes studies investigating the optimal carbon tax on a
polluting exhaustible resource (Ulph and Ulph, 1994; Hoel and Kverndokk, 1996; Tahvonen, 1997).

5Earlier studies related specifically to mining and environmental policy include Stollery (1985),
Roan and Martin (1996), Cairns (2004), Farzin (1996), White et al. (2012) and Lappi and Ollikainen
(2018). For example Roan and Martin (1996) analyse the reclamation and extraction decision of
a mine under command and control regulation with a model, where the reclamation is conducted
during the production process by reclaiming some of the waste. In a recent working paper,
Aghakazemjourabbaf and Insley (2018) compare environmental bond and strict liability rule, when the
extracting firm must clean-up the extraction site, but they do not consider the social optimum like done
here.
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in their model to be the amount of mine damaged land, and they show that a tax on

the pollution stock can be used to reach the social optimum, if the firm is required to

pay the marginal damage for every increment in the pollution stock.6 The model applied

by Yang and Davis (2018) has two important simplifications: First, they assume that

the pollution stock damage and the reclamation cost are linear functions with respect to

the stock, and second, they assume that there is no natural decay of the pollution stock

(in fact, in their model the pollution stock can never decrease unless reclaimed). These

assumptions imply that the reclamation is of ”now or never”-type, that is, the reclamation

is either performed when the extraction operation is shutdown or never. Also Lappi (2018)

arrives at this conclusion in a special case of his model when the pollution damages and

the reclamation cost are linear and when the pollution stock decays exponentially. It is

not possible in Yang and Davis (2018) to delay the reclamation or the clean-up for some

time. The authors mention that the ”now or never”-type reclamation response matches

empirical observation, but this does not mean that it is socially optimal.

The model here allows to delay or wait with the reclamation if it is socially optimal to

do so. To allow this possibility (and others), three models are applied for the description

of the reclamation stage: first, the clean-up model of Lappi (2018), which allows waiting

with the clean-up; and second, the clean-up model of Caputo and Wilen (1995) in which

the pollution or waste stock is cleaned continuously as time goes on; and third, a model in

which the level of reclamation effort is chosen to balance the marginal costs and benefits.7

The above mentioned simplifications of Yang and Davis (2018) are dropped, and there-

fore the pollution damage and reclamation cost functions are allowed to be non-linear

and the pollution stock can decay through natural processes such as dilution, microbial

degradation and immobilization. But contrary to their model, it is assumed in this paper

that there are no abatement possibilities for the firm during the extraction operation.

This modelling choice is made to simplify the exposition, but adding an abatement op-

tion for the firm (as an additional control variable as for example in Lappi and Ollikainen

(2018)) is a relatively straightforward extension to the model.

6This tax scheme, in which the polluter pays for the losses of the other agents (here pollution damages),
is in fact based on the same principles as the ones used for example by Loeb and Magat (1979) (regulation
of a monopoly) and Kim and Chang (1993) (regulation of a polluting oligopoly).

7The last two models are presented in sections 5 and 6 of Supplementary material.
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Policy implications. Optimal regulation of a polluting exhaustible resource firm must

guide the producer to exploit the resource optimally, to shut-down the site at the opti-

mal date, to leave optimal amount of pollution to the site after production shut-down

and to deposit a sufficient amount of money to a reclamation trust. In principle, the

results give a formula to calculate the socially optimal deposit to the reclamation trust.

Mitchell and Casman (2011) state that the payment to the so-called trust account in

Pennsylvania’s mining sector is based on the present value reclamation costs, and it is

unclear how the damages from the pollution stock are taken into account.8 Similarly, in

Canada and Australia the bond payment by the coal producer is based on the reclamation

costs (Cheng and Skousen, 2017). Social optimality, however, calls for reclamation trust

payments that are also based on the pollution damages and not just on the reclamation

costs.

More importantly, the socially optimal reclamation payment must take into account

the socially optimal extraction stage choices that yield the pollution stock or the state

of the environment which is to be reclaimed. It is not sufficient from the social optimum

point of view to simply use a pollution tax during the extraction stage, since then the

site is not reclaimed (also Yang and Davis (2018) arrive at this conclusion). Neither is it

sufficient to require only a reclamation payment from the firm, since then extraction rate

and pollution stock level are distorted relative to the social optimum. Therefore both a

tax with an optimal shut-down date and a reclamation payment are needed to internalize

the externality. The results show that the calculation of the optimal trust payment must

take into account information on both the extraction and reclamation stages including

extraction technology, prices, natural decay of the pollution stock, pollution damages,

reclamation costs and the applied interest rate. If successful, this information can be

used to design a tax and reclamation payment policy, which together with a requirement

that the firm must pay the monies at the beginning of the extraction operation, yields

the social optimum. As the monies are paid at the beginning of the extraction operation,

the risk that the firm folds to avoid the reclamation payment is diminished.

The study is organized as follows. Section 2 develops the notation and the main

8According to Mitchell and Casman (2011), at the beginning of the mining operation, the producer
pays the present value of the reclamation cost multiplied with a volatility premium.

6



assumptions. In Section 3 the reclamation problem and in particular the properties of

the problem’s value function is investigated. The optimal extraction decision is analysed

in Section 4. Section 5 analyses the producer’s incentives when it is confronted with the

optimal regulation and a profit tax. Section 6 concludes the study. Most of the proofs

and additional analysis are relocated in the appendices or in Supplementary material.

2 Notation and assumptions

This section introduces the notation and assumptions for the extraction stage model and

for the reclamation stage model that allows waiting with the reclamation decision. Figure

1 depicts the time-line of the model.

Extraction stage Reclamation stage

0 T τ , v time

Figure 1: An illustration of the model’s time-line. The extraction stage is followed by
the reclamation stage, which begins at time T . The reclamation date is τ and the size is
v.

Extraction begins at time zero and continues until the optimally chosen shut-down

date T . After that the reclamation stage commences. During the extraction stage, the

extraction rate q(t) and the shut-down date T are chosen to maximize the net benefits

while taking into account that the extraction depletes the resource stock X(t) and creates

a stock externality, say pollution, which is essentially captured by the state variable N(t)

and by the damage function. In contrary to Yang and Davis (2018), this stock is allowed

to decay, and it is interpreted as the amount of pollution at time t, but other interpre-

tations are of course possible.9 For example, variable N can be interpreted simply as an

9Yang and Davis (2018) write without references on page 285 that ”Given that the pollutants from
mining are mainly disturbed lands and other effects with no natural attenuation, we do not allow for
natural attenuation of the stock of pollution”. But natural attenuation is relevant for mining as the
following examples show. According to Lottermoser (2010, page 265) the amount of cyanide in gold
mining diminishes naturally. Wilkin (2007) writes on page 8 related to acid mine drainage that ”...at
nearly all mining sites, natural processes are contributing to varying degrees and in some cases may
contribute significantly to site remedial goals”. In oil sand extraction natural attenuation of the pollution
stock occurs via biodegradation (Quagraine et al., 2005; Clemente and Fedorak, 2005; Whitby, 2010;
Foght et al., 2017). Although the current paper allows the pollution stock to decay, the description of
the dynamics using a single differential equation is admittedly a crude simplification of the very complex
real phenomena.
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index for the state of the environment. A higher index value means lower environmental

state. At the beginning of the extraction stage N(0) = 0, and the environmental is at its

best condition. As extraction commences, the index begins to increase and the state to

worsen. At the shut-down date T the index obtains a relatively high value, and as the

extraction ceases the state of the environment begins to improve by natural processes

such as re-vegetation and pollutant decay and immobilization. In what follows the stock

variable N is referred to as the (size of the) pollution stock. The price of the resource

is assumed to be a constant p. The extraction costs are captured by cost function G,

whose value depends on the extraction rate and possibly on the amount of resource left

in the ground. In Section 4 the extraction stage is analysed under different extraction

cost function specifications, and the respective assumptions are developed there.

When choosing the extraction rate and the shut-down date of the extraction stage,

the regulator must take into account the effect of these choices on the reclamation stage.

These effects are conveyed through the discounted scrap value, which is denoted with

S(N(T ), T ). This is included in the extraction stage objective, and it is the central

target for investigation in Section 3 where the optimal reclamation is analysed. Function

S gives the discounted reclamation stage value. The initial value of the pollution stock at

the reclamation stage, denoted with nT , is the shut-down date value of the pollution stock

at the extraction stage, N(T ). That is, nT = N(T ). The reclamation cost function is C.

This cost depends on the size of the reclamation (the amount of pollution stock cleaned at

the reclamation date τ), v ∈ [0, nT ], and it satisfies properties C ′ > 0 and C ′′ ≥ 0. Hence

the reclamation cost is strictly increasing and convex in the reclamation size, and there

are no fixed costs related to reclamation process. The pollution stock causes damages

and the damage function is denoted with D. This function satisfies properties D(0) = 0,

D′ > 0 and D′′ ≥ 0. In Yang and Davis (2018) the reclamation cost and the pollution

damage are linear in the stock, but here strictly convex functions are allowed.

The pollution stock dynamics during the extraction stage are given by the following

initial value problem:

Ṅ(t) = αq(t) − f(N(t)), N(0) = 0. (1)

Here, parameter α > 0 describes the accumulation of the pollution stock as the resource
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is extracted. Function f , which describes the decrease of the stock through natural

processes, is explained shortly. The pollution stock dynamics during the reclamation

stage are given by the following initial value problem:

Ṅ(t) = −f(N(t)), N(T −) = nT > 0, (2)

where symbols N(T −) denote the left-sided limit of N(T ), that is, N(T −) = limt→T − N(t).

The extraction rate and hence the pollution accumulation is zero during the reclamation

stage.

Two important assumptions are made regarding the stock dynamics. First, it is

assumed that f is twice continuously differentiable, f > 0 for N > 0, f(0) = 0 and

that there exists a constant B such that |f ′(N)| ≤ B. This guarantees that there exists

a unique global solution to Equation (2) (and to Equation (1) for a given q(t)). This

solution is denoted with N(t; nT , T ). Second, it is supposed that the solution satisfies

inequality N(t; nT , T ) > 0 for all t, that is, the stock never disappears other than through

reclamation. For future reference, denote with Nn(t; nT , T ) the partial derivative with

respect to the second variable (evaluated at the point (nT , T )). Similar notation will be

used in what follows without further explanations. For example, notation NT (t; nT , T )

means the partial derivative of N(t; nT , T ) with respect to third variable.

3 Reclamation stage

The model is analysed starting from the reclamation stage after which the optimal ex-

traction stage decision and its properties are investigated. The main link between the

stages is the reclamation stage value function, which acts as the scrap value in the ex-

traction stage decision.10 The regulator takes as given the inherited pollution stock from

the extraction stage and minimizes the sum of the total discounted damages from the

pollution stock and the discounted reclamation costs by choosing the date and the size of

10Two alternative reclamation models are presented in Supplementary material. One model is the
continuous clean-up model of Caputo and Wilen (1995) and the other is a simple reclamation model, in
which reclamation operation is done at the shut-down date to reclaim a fraction of the pollution stock.
It is shown that the value function has similar properties as in the model presented here (some minor
additional assumptions are applied in the continuous clean-up model, though). This means that the
extraction stage analysis of Section 4 carries over to these alternative specifications.

9



the reclamation operation. To simplify the analysis, it is assumed that all of the remain-

ing pollution stock is reclaimed, which means that v = N(τ ; nT , T ). Regulator’s problem

becomes then

max
τ∈[T,∞]

{

∫ τ

T
−D(N(t; nT , T ))e−r(t−T ) dt − C(N(τ ; nT , T ))e−r(τ−T )

}

, (3)

since after τ the damages are zero by the assumption D(0) = 0. This problem with T = 0

has been analysed in Lappi (2018).11 The Lagrangian related to problem (3) is

L(·) = λ0

(

∫ τ

T
−D(N(t; nT , T ))e−r(t−T ) dt − C(N(τ ; nT , T ))e−r(τ−T )

)

− λ(T − τ), (4)

in which λ0 and λ are multipliers (constants). If the problem has a solution, then Fritz

John Theorem tells that there exists multipliers (λ0, λ) 6= (0, 0) such that λ0 ∈ {0, 1},

and that the following conditions hold at the optimal reclamation date τ ∗:

λ0

(

− D(N(τ ; nT , T ))e−r(τ−T ) + rC(N(τ ; nT , T ))e−r(τ−T )

− C ′(N(τ ; nT , T ))Ṅ(τ ; nT , T )e−r(τ−T )

)

+ λ = 0, (5)

λ ≥ 0, τ − T ≥ 0, λ(τ − T ) = 0. (6)

Clearly λ0 = 1. Hence the optimal reclamation date satisfies the following condition:

D(N(τ ∗; nT , T )) − rC(N(τ ∗; nT , T ))

− C ′(N(τ ∗; nT , T ))f(N(τ ∗; nT , T ))







≥ 0, if τ ∗ = T,

= 0, if τ ∗ > T.
(7)

In words, in an interior optimum, the reclamation is postponed until the cost of waiting

one more unit of time equals the benefit of waiting. The cost is the additional damage and

the benefit is the sum of the interest on the unused reclamation funds and of the decrease

in the reclamation costs due to decrease in the pollution stock through natural processes.

This condition is essentially the optimality condition presented in Lappi (2018) for the

clean-up of a polluted site. What is important here, is that the optimal reclamation date

depends on the decisions made in the extraction stage. Namely, the date depends on the

pollution stock at the shut-down date of the extraction operation. Note also, that if there

11Some of the presented results are replications. Namely Lemma A.1, and Part (i) of Lemma A.2 and
Part (i) of Proposition 1 are replications of the results in Lappi (2018).
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are no natural cleaning processes (that is, if f = 0), the benefit of waiting consists only of

the interest on the unused reclamation funds. If, in addition, the pollution stock damage

and reclamation cost functions are linear, the site is reclaimed either at the shut-down

date or never as in Lappi (2018, Example 1) and in Yang and Davis (2018). The related

optimal reclamation size is

v∗ = N(τ ∗; nT , T ). (8)

Analysis is continued by investigating the properties of the reclamation stage pro-

gram’s value function and of the discounted reclamation cost. It is assumed throughout

that for an optimal interior reclamation date the following inequality holds:

D′(N(τ ∗; nT , T )) − C ′(N(τ ∗; nT , T ))r − C ′′(N(τ ∗; nT , T ))f(N(τ ∗; nT , T ))

− C ′(N(τ ∗; nT , T ))f ′(N(τ ∗; nT , T )) < 0. (9)

It can be calculated that if the second derivative of the objective function in (3) is strictly

negative (which implies that the function is strictly concave), then the inequality in (9)

holds for an optimal interior reclamation date.12

The optimal reclamation date τ ∗ and the optimal reclamation size v∗ depend on

the parameters nT , T and r. Since only nT and T are endogenous variables in the

whole model, the optimal reclamation date and size are denoted with τ ∗ = τ(nT , T ) and

v∗ = v(nT , T ), and the explicit dependency of the optimal values on r is left out of the

notation. The value function of the maximization problem (3) is defined as

V (nT , T ) :=
∫ τ(n

T
,T )

T
−D(N(t; nT , T ))e−r(t−T ) dt − C(v(nT , T ))e−r(τ(n

T
,T )−T ). (10)

The necessary amount of money needed for the reclamation at the end of the extraction

stage is given by C(v(nT , T ))e−r(τ(n
T

,T )−T ), since this sum will increase to C(v(nT , T )) as

time progresses from T to τ ∗. To simplify the notation define two variable functions K

and S with

K(n, T ) := C(v(n, T ))e−r(τ(n,T )−T ) and S(n, T ) := V (n, T )e−rT . (11)

Function K measures the necessary amount of money in the reclamation trust at the end

of the extraction stage (the cost of reclamation, which has been discounted to the shut-

down date T ). This function is needed to define the amount of money the firm is required

12This is shown in Section 1 of Supplementary material.
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to deposit to the trust by the end of the extraction stage. Function S measures the

reclamation stage value, which is discounted to time t = 0, when the extraction operation

begins. This function acts as the discounted scrap value function in the extraction stage

problem.

Dependency of S and K on the shut-down date pollution stock level. Before analysing

the properties of S and K, the dependency of the reclamation date and size on the shut-

down date pollution stock is investigated. Lemma A.2 in Appendix A.1 provides the

mathematical details of the dependency of τ ∗ and v∗ on this endogenous parameter. This

lemma is a part of the proof of Proposition 1.

nT nT
t

v∗ τ∗ N

n1
T n2

T

45◦

v̂∗

n̂T

T
n1

T n2
Tn̂T

τ̂∗ v̂∗

T τ̂∗

n̂T

Figure 2: Illustration of the optimal reclamation decision for different shut-down date
pollution stocks. Here (n1

T , n2
T ) is the interval on which τ ∗ is an interior point. Figure on

the left depicts the optimal reclamation size as function of the shut-down date pollution
stock. In the middle, the optimal reclamation date is plotted as a function of the shut-
down date pollution stock. The last figure contains pollution stock paths that start
from different shut-down date pollution stocks and illustrates the different possibilities
for the reclamation (the dashed curves represent to time paths of the pollution stock if
reclamation is sub-optimally not conducted).

The optimal reclamation decision is illustrated in Figure 2, when τ ∗ is an interior point

of [T, ∞) on some open n-interval (n1
T , n2

T ). The figure on the left depicts the optimal

reclamation size as a function of the shut-down date pollution stock, and the figure on

the middle depicts the optimal date as a function of the shut-down date pollution stock.

These figures illustrate that as the pollution stock increases from zero towards n1
T , the

optimal reclamation date remains at the shut-down date T and consequently the optimal

reclamation size increases. This is essentially the ”now or never”-reclamation result of

Yang and Davis (2018), where the reclamation cannot occur after the shut-down date

and all of the stock is instantaneously cleaned.
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The current model allows to wait with the reclamation operation. The pollution stock

value n1
T is the largest value at which the optimal date is still T . After n1

T an increase in

the pollution stock increases the optimal reclamation date, but keeps the size fixed. The

figure on the right illustrates the evolution of the three possible paths of the pollution

stock in time. The path starting from n̂T decreases in time as the natural processes clean

the stock until at time τ̂ ∗ the site is reclaimed. The amount of pollution cleaned is in

this case v̂∗. This figure also illustrates two other possibilities at which the reclamation

is either instantaneous (the dashed line over the x-axis depicts the pollution stock path

if the reclamation operation is sub-optimally not conducted at the shut-down date) or is

delayed compared to τ̂ ∗.

Next proposition shows how a change in the shut-down date pollution stock affects

the discounted reclamation cost and the discounted scrap value.

Proposition 1. Let (n1
T , n2

T ) be any interval on which τ ∗ > T . Then

(i) Kn(nT , T ) < 0 for all nT ∈ (n1
T , n2

T ),

(ii) Kn(nT , T ) > 0 for all nT ∈ (0, n1
T ),

(iii) Sn(nT , T ) < 0 for all nT ∈ (0, ∞).

Proof. See Appendix A.1.

The result regarding the the discounted reclamation cost in Part (i) of this proposition

replicates the results of Lappi (2018). The discounted reclamation cost is either strictly

increasing or strictly decreasing in the shut-down date pollution stock depending whether

the reclamation date is τ ∗ = T or τ ∗ > T . If it is optimal to delay the reclamation

operation (τ ∗ > T ), the size of the reclamation is constant with respect to the shut-down

date pollution stock and the reclamation date is increasing in the shut-down date pollution

stock (see Part (i) of Lemma A.2 in Appendix A.1 and also Figure 2). This implies, that

the discounted cost of reclamation decreases since the current reclamation cost is thus

unaffected and the discount factor is decreased by the increase in the shut-down date

pollution stock. When the reclamation operation is done at the shut-down date T as

in Part (ii), a small increase in the shut-down date pollution stock causes no change in
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the reclamation date, but increases the size of the reclamation (see Part (ii) of Lemma

A.2 in Appendix A.1).13 Hence the reclamation cost and also the discounted reclamation

cost increase. The result in Part (ii) is similar to the result in Yang and Davis (2018),

where the reclamation cost increases linearly with the shut-down date pollution stock. As

noted in Lappi (2018), non-linearities in the pollution damages and reclamation costs and

the existence of natural decay of the pollution stock give rise to the possibility that the

discounted reclamation cost decreases as the shut-down date pollution stock increases.

Part (iii) says that the discounted scrap value is decreasing in the shut-down date

pollution stock.14 This is very intuitive at least when the reclamation occurs at the shut-

down date, since in that case the future pollution damages are zero and therefore an

increase in the pollution stock to be reclaimed just increases the reclamation cost and

therefore decreases the discounted scrap value. When it is optimal to delay the recla-

mation operation, two opposing effects exist. First, as Part (i) of Proposition 1 shows,

the discounted reclamation cost is strictly decreasing in the shut-down date pollution

stock. Second, as the shut-down date pollution stock increases, the path of the pollution

damages over the reclamation stage shifts upwards, and therefore the overall damages

increase. Part (iii) shows that the discounted scrap value is strictly decreasing in the

shut-down date pollution stock, and therefore an increase in the overall damages is strictly

greater than the decrease in the reclamation cost.

Dependency of S and K on the shut-down date. A change in the initial time of the

reclamation stage has also an effect on the optimal reclamation date and size. Lemma A.3

presented in Appendix A.2 offers the mathematical details for these effects. When the

reclamation occurs at the beginning of the reclamation stage, and the shut-down date T

of the extraction stage increases by a small amount, the reclamation date also increases

by approximately the same amount, but the size of the reclamation operations stays

unchanged. Similarly, if the reclamation operation is delayed, then only the reclamation

date adjusts upwards as the shut-down date T is increased.

13For this to hold, nT must not equal to n1

T , since at that stock level an increase in the stock causes
a shift in the reclamation date from the shut-down date to some later date.

14In Yang and Davis (2018) the discounted scrap value is obtained from the reclamation cost by mul-
tiplying it with −e−rT , since delay of the reclamation operation is not allowed. Therefore in their model
the scrap value decreases linearly in the shut-down date pollution stock.
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Next the dependency of the discounted reclamation costs and the discounted scrap

value on the initial time of the reclamation stage T (the shut-down date of the extraction

stage) is investigated.

Proposition 2. Whether or not it is optimal to delay the reclamation operation, the

following hold:

KT (nT , T ) = 0, and ST (nT , T ) = −rV (nT , T )e−rT > 0.

Proof. See Appendix A.2.

This result means that an increase in the shut-down date has no effect on the dis-

counted reclamation cost (recall that K measures the reclamation cost which is discounted

to the shut-down date T ). There are two reasons for this. First, the reclamation size and

hence the reclamation cost remains unchanged, when the shut-down date increases by

a small amount. Second, the discount factor remains the same because the reclamation

date increases by one unit, when the shut-down date increases by one unit. The result re-

garding the discounted scrap value S (discounted to time t = 0) is central for the optimal

shut-down date decision of the extraction site, which is analysed in Section 4. The result

in the previous proposition shows that the discounted scrap value is strictly increasing in

the shut-down date: a unit increase in the shut-down date increases the discounted scrap

value approximately by the amount −rV (nT , T )e−rT . This is the discounted interest on

the avoided monetary value of the reclamation stage program, and therefore, if one begins

the reclamation stage one unit of time later, one receives a benefit which is in absolute

value terms the interest on the discounted monetary value of the reclamation stage. It

should be noted that also in Yang and Davis (2018) the reclamation cost (that is, the

pollution stock multiplied by a constant) is unaffected by a change in the shut-down date

and that the discounted scrap value increases as the shut-down date is increased.

This section concludes by noting that if its never optimal to reclaim, then similar

calculations as in the proof of Proposition 2 yield equation ST (nT , T ) = −rV (nT , T )e−rT ,

which has the clear economic intuition explained above.15

15These calculations are presented in Section 4 of Supplementary material.
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4 Extraction stage

As explained above, the initial value of the pollution stock at the reclamation stage, nT ,

is the size of the pollution stock at the end of the extraction stage, N(T ). When deciding

the socially optimal extraction rate and the shut-down date, the regulator must take into

account the effect of choices on the reclamation stage. These effects are conveyed through

the discounted scrap value S(N(T ), T ).

General case. Let the stock dynamics for the pollution stock be given by Equation

(1) and suppose that this stock causes damages during the extraction stage. Suppose

that the extraction cost depends on the amount of resource in the ground X and on

the rate of extraction q. The cost function is denoted with G. A typical assumption

about the cross-partial derivative GqX is that it is strictly negative (as for example in

Pindyck (1978), Caputo (1990), Pesaran (1990), Tahvonen (1997), Krautkraemer (1998)

and Cairns (2014)), which reflects a situation where the marginal extraction cost increases

as the resource stock diminishes. Fixed operating costs are allowed in the sense that

G(0, X) ≥ 0 for any resource stock level. In particular, if G(0, X) = 0, then there are

no fixed costs and if G(0, X) > 0, then there are fixed costs. These costs include any

operation costs that are borne even if the extraction rate is zero, but the site is not

shut-down. After the extraction site is shut-down these costs are also zero. Then the

regulator’s maximization problem is given as

max
{q(t),T }

∫ T

0

(

pq(t) − G(q(t), X(t)) − D(N(t))
)

e−rt dt + S(N(T ), T ) (12)

s.t Ẋ(t) = −q(t), X(0) = x0, X(T ) ≥ 0, (13)

Ṅ(t) = αq(t) − f(N(t)), N(0) = 0, N(T ) ≥ 0, (14)

q(t) ≥ 0, (15)

where S is given by (11). Variable p is the constant price of the resource and x0 is

the initial amount of the resource in the ground. Next proposition presents the optimal

shut-down rule for the extraction operation.16

Proposition 3. Suppose that the extraction cost function G satisfies properties Gq > 0

and Gqq > 0 for all q and X.

16Yang and Davis (2018) do not analyse the shut-down rule.
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(i) If q(T ) > 0, then

q(T )

[

G(q(T ), X(T ))

q(T )
− Gq(q(T ), X(T ))

]

+ D(N(T ))

= −rV (N(T ), T ) − γ(T )erT f(N(T )). (16)

(ii) If q(T ) = 0, then

G(0, X(T )) + D(N(T )) = −rV (N(T ), T ) − γ(T )erT f(N(T )). (17)

Proof. See Appendix A.3.

On the left-side of these equations is the cost of waiting one more unit of time and

on the right-side is the benefit of waiting one unit of time. At the optimal shut-down

date these values must be the same. The cost of waiting consists of two parts. In the

shut-down rule (16), the first is the difference between the average and the marginal costs

multiplied by the terminal extraction amount, and the second is the damages from the

pollution stock at the shut-down date. The benefit of waiting is also a sum of two parts.

The first is the interest on the avoided reclamation stage value, and the second, namely

the term −γ(T )erT f(N(T )), is the value of the removed pollution stock by the natural

process during the unit of time spent on waiting, where the value is measured with the

current shadow value of the pollution stock.

A typical assumption in the literature about the extraction cost function, found for

example in Pindyck (1978), Pindyck (1987) and Tahvonen (1997), is G(q, X) = qc(X).

The function c is assumed to satisfy property c′ < 0.17 With this specification the shut-

down rule becomes

D(N(T )) = −rV (N(T ), T ) − γ(T )erT f(N(T )), (18)

since the marginal and average costs are equal. Hence the shut-down rule is characterized

by the pollution stock dynamics and damages at the terminal pollution stock.

Acid mine drainage. The model can capture acid mine drainage (AMD). AMD takes

a long time to develop, and it causes damages mainly after the extraction stage (Dold,

2014). As long as the tailings are kept water saturated the oxidization process is slow

17For this function Gqq = 0, but assumption Gqq > 0 was not used in the proof.
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and AMD is limited. After shut-down the mine maintenance operations cease and the

AMD is amplified and begins to cause problems. The amount of tailings grows as the

resource is exploited. Hence, to capture AMD, it is now assumed that the stock variable

N causes damages only during the reclamation stage. In this case the fixed extraction

costs are important as the following result shows:

Proposition 4. Suppose that the extraction cost function G satisfies properties Gq > 0

and Gqq > 0 for all q and X.

(i) If G(0, X) > 0 for all X, then the extraction stage ends at the time instant T > 0,

which satisfies either condition

q(T )

[

G(q(T ), X(T ))

q(T )
− Gq(q(T ), X(T ))

]

= −rV (N(T ), T ) − γ(T )erT f(N(T ))

(19)

or conditions

q(T ) = 0 and G(0, X(T )) = −rV (N(T ), T ) − γ(T )erT f(N(T )). (20)

(ii) However, if G(0, X) = 0 for all X, then no optimal solution exists with T > 0 and

q(t) > 0 for any t.

Proof. See Appendix A.4.

This result also holds if it is assumed, like Gaudet et al. (1995), Roan and Martin

(1996) and Cairns (2004) do, that the cost function is independent of the resource left in

the ground. When q(T ) > 0, the average extraction cost is above the marginal extraction

cost function at the end of the extraction operation. Therefore it is optimal during some

interval at the end of the extraction stage for the operator to make a loss compared to the

case in which the extraction is stopped when average cost equals the marginal cost. The

amount of loss at the shut-down date is given by the left-side of (19), and it is balanced

with the benefit of postponing the reclamation stage by one time unit.

The second part of this result says that if there are no fixed costs, then there is no

economically interesting solution to the problem with acid mine drainage. Intuitively,

zero fixed costs imply that the regulator can increase the value of the objective with
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any increase in the shut-down date, since this action postpones the (negative) reclama-

tion stage value without causing any cost. However, from the practical point of view,

fixed costs are positive in mining. For example, the tailings dams containing the wastes

must be kept (and are kept in practice) water saturated in order to prevent AMD (Dold,

2014). This is costly even if extraction has stopped but the site is not shut-down. An-

other example is the compensation to the land owner as in oil production in Alberta

(Muehlenbachs, 2015). However, note that no solution exists with the often applied cost

function G(q, X) = qc(X), since it does not involve fixed costs.

Of course, there are other possible assumptions about the extraction costs. For ex-

ample, Eswaran et al. (1983), Mumy (1984) and Cairns (2008) assume a concave-convex

extraction cost function (marginal cost is U -shaped) that does not depend on X. Re-

call that with this cost specification a standard exhaustible resource model without a

reclamation stage produces as the optimal shut-down date an instant t, which satisfies

equation G(q(t))/q(t) = Gq(q(t)). This does not hold when the optimal decision of the

reclamation stage is taken into account. Instead, Equation (19) holds. The reason is that

q cannot decrease below the value that minimizes Gq, since the net price increases at the

rate of interest by (A.43) (cost is independent of X). Therefore q(T ) > 0, and Equation

(19) characterizes the shut-down date.

5 When should the monies be collected?

This section investigates producer’s response to the optimal regulation, when the pay-

ments are collected using a profit tax. This profit tax is not part of the policy mix used to

reach the social optimum, but it is analysed to show that the firm is indifferent between

paying a unit of money to the trust now or at some later date. What this means for the

policy, is that the firm can be required to pay the monies to the trust at the maximum

rate from the beginning of the extraction operation onward, which has the benefit that

the possible strategic bankruptcy before the monies have been paid is avoided.

The socially optimal values are denoted with the ∗-symbol. The regulation consists of

the socially optimal shut-down date for the extraction stage, T ∗, of the amount of money

the producer must have deposited to the reclamation trust before the extraction ends,
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K(N∗(T ∗), T ∗), and of the pollution tax Γ(t) := −γ(t)ert on the pollution generation

αq. In addition, the producer is required to collect the monies to the reclamation trust

from its profits. Does it matter from the social welfare point of view how the producer

collects the funds from its profits, and is any additional regulation needed? Additional

regulation, if any is needed, consists of rules that govern the payments. Suppose that for

every time instant the producer has to decide a fraction of the net profit that goes to the

trust. This fraction is denoted with θ(t), and the size of the reclamation trust at time t

is denoted with B(t). When extraction commences the trust is empty and the deposited

monies grow at the rate of interest r. It is assumed that the producer’s discount rate

equals the regulator’s discount rate r, but at the end of this section the other possibility

that the producer’s rate of time preference differs from r is investigated. For example, it

can be greater than r, which seems often to be the case in practice.

The producer’s problem is to choose the extraction rate and the fraction of profits

going to the trust to maximize the total discounted net profit while taking into account

the state constraints. Mathematically the problem is to

max
{q(t),θ(t)}

∫ T ∗

0

(

pq(t) − G(q(t), X(t)) − Γ(t)αq(t)
)(

1 − θ(t)
)

e−rt dt (21)

s.t Ẋ(t) = −q(t), X(0) = x0, X(T ) ≥ 0, (22)

Ḃ(t) = rB(t) + θ(t)
(

pq(t) − G(q(t), X(t)) − Γ(t)αq(t)
)

, (23)

B(0) = 0, B(T ∗) = K(N∗(T ∗), T ∗), (24)

q(t) ≥ 0, θ(t) ∈ [0, 1]. (25)

To simplify the notation, denote the instantaneous net profit with Z(q) := pq −

G(q, X) − Γαq. Define the extraction project as profitable at time t, if it satisfies the

inequality Z(q(t))(1 − θ(t)) > 0, and define the project as profitable on the extraction

stage [0, T ∗], if
∫ T ∗

0
Z(q(t))

(

1 − θ(t)
)

dt > 0. (26)

That is, the project is profitable on the extraction stage, if the total discounted net profit

is strictly positive. These definitions are applied to show that the shut-down date and

the pollution tax together with the requirement that the reclamation funds are collected

from the operative profits with a profit tax gives the producer incentives to extract the
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resource according to the social optimum.

Proposition 5. Suppose that the producer’s time preference matches regulator’s prefer-

ence. A profitable project that collects sufficient amount of money to cover the reclamation

costs produces the socially optimal extraction and state variable paths, which is indepen-

dent of the collection of the reclamation funds.

Proof. See Appendix A.5.

This result says, that the given regulation yields the social optimum independently

of when the producer collects the monies for the reclamation. The producer is free from

the social point of view to collect the monies for example during some interval at the

beginning, or during some interval at the end of the extraction stage. This is essentially

due to Lemma A.4 presented in Appendix A.5, which states that the shadow value of

money in the reclamation trust decreases at the rate of interest. The producer is therefore

indifferent between putting one unit of money to the trust and keeping it.

In practice the producer’s rate of time preference is higher than the regulator’s. To

see what kind of tax rule is needed for social optimum with the profit tax, let σ(t) be

any time dependent rate of time preference for the producer and suppose that it differs

from r. The above regulation is not sufficient to yield the socially optimal allocation.

However, a slight adjustment to the profit tax rule recovers the social optimum.

Proposition 6. Suppose that the producer’s rate of time preference σ(t) is different from

the regulator’s time preference r. Then a profitable project that collects sufficient amount

of money to cover the reclamation costs produces the socially optimal extraction and state

variable paths, if the fractional profit tax is replaced with a profit tax defined with

χ(t) := (1 − θ(t))e(σ(t)−r)t.

The social optimum is obtained independently of the collection of the reclamation funds.

Proof. The Hamiltonian in the producer’s problem with time preference σ and tax rule

χ(t) = (1 −θ(t))e(σ−r)t equals the Hamiltonian H in (A.55)-(A.56). This implies that the

results in Lemma A.4 and in Proposition 5 hold.
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This tax rule effectively changes the producer’s rate of time preference to match the

social rate of time preference and therefore the present value of profit tax for the producer

is the same as for the regulator. Again, if this rule is used, the producer is free to make

the payments at any time intervals it desires and the social optimum is achieved.

As stated in the beginning of this section, the indifference of the firm to pay money to

the trust now or at some later date, means that the regulator can require the firm to pay

the monies to the trust at the maximum rate at the beginning of the extraction operation

(that is, at rate θ(t) = 1 from t = 0 onward as long as it takes to satisfy the terminal

condition (24)). This requirement has two positive qualities: first, the social optimum is

achieved; second, as the monies are collected at the beginning of the extraction stage, the

firm’s incentives to declare bankruptcy before paying the reclamation bill are diminished.

6 Conclusions

This study analyses the final stages of polluting exhaustible resource production, namely,

the extraction and reclamation stages. The socially optimal extraction and reclamation

are characterized, and the regulation that induces the producer to behave in the socially

optimal way is investigated. The key to analyse the model is to study the value function

of the reclamation stage problem. Doing this enables to add this value function as the

scrap value function for the extraction stage problem to find out what is the optimal

regulation. The optimal regulation calls for a pollution tax (although other instruments

may also be feasible), an optimal shut-down date and a requirement that the producer

must deposit sufficient funds to cover the eventual reclamation costs.

The results dictate a formula for the size of the payment by the firm to enable the

socially optimal reclamation operations. There is no need (in this model) to require the

producer to pay the funds at the beginning of the extraction stage – indeed, from the

social optimum point of view, the producer is free to choose when to pay the funds. In

practice, though, it must be remembered that the firm may have incentives to postpone

the deposits and try to drive the operation to bankruptcy before the socially optimal shut-

down date in order to avoid paying the reclamation costs. This incentive is diminished,

if the regulation is supplemented by a requirement that the firm must pay the monies to
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the reclamation trust at the beginning of extraction operation.

A Appendix

A.1 Proof of Proposition 1

First, a few helpful lemmas are presented.

Lemma A.1. Nn(t; nT , T ) > 0.

Proof. The proof is the same as in Lappi (2018) apart from the notation and is presented

in Section 2 Supplementary material for completeness.

Lemma A.2.

(i) If τ ∗ > T on some open n-interval (n1
T , n2

T ), then τn(nT , T ) > 0 and vn(nT , T ) = 0

on that interval.

(ii) If τ ∗ = T on some open n-interval, then τn(nT , T ) = 0 and vn(nT , T ) = 1 on that

interval.

Proof. (i) The proof is the same as in Lappi (2018) apart from the notation and is

presented in Section 3 of Supplementary material for completeness.

(ii) Suppose that τ ∗ = T on some open n-interval. Clearly τn(nT , T ) = 0. Further-

more, since v(nT , T ) = nT for τ ∗ = T , vn(nT , T ) = 1 for τ ∗ = T .

Proof of Part (i):

Proof. The partial derivative of K with respect to n is

Kn(nT , T ) = C ′(v(nT , T ))vn(nT , T )e−r(τ(n
T

,T )−T )

− rτn(nT , T )C(v(nT , T ))e−r(τ(n
T

,T )−T ). (A.1)

Note that for all nT ∈ (n1
T , n2

T ), τ ∗ > T , which implies by Part (i) of Lemma A.2 that

vn(nT , T ) = 0. Hence Equation (A.1) simplifies to

Kn(nT , T ) = −rτn(nT , T )C(v(nT , T ))e−r(τ(n
T

,T )−T ). (A.2)

This is strictly negative since τn(nT , T ) > 0 by Part (i) of Lemma A.2.
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Proof of Part (ii):

Proof. The reclamation date is T for all nT ∈ (0, n1
T ). This implies by Lemma A.2 that

τn(nT , T ) = 0 and vn(nT , T ) > 0. Then

Kn(nT , T ) = C ′(v(nT , T ))vn(nT , T )e−r(τ(n
T

,T )−T ) > 0 (A.3)

by Equation (A.1).

Proof of Part (iii):

Proof. An envelope theorem (Corollary 6.1.1 in Carter (2001); Milgrom and Segal (2002))

is applied to optimization problem (3). This gives

Sn(nT , T ) = Vn(nT , T )e−rT (A.4)

=

(

∫ τ(n
T

,T )

T
−D′(N(t; nT , T ))Nn(t; nT , T )e−r(t−T ) dt (A.5)

− C ′(N(t; nT , T ))Nn(t; nT , T )e−r(τ(n
T

,T )−T )

)

e−rT . (A.6)

This is strictly negative by Lemma A.1.

A.2 Proof of Proposition 2

Note that it follows from the identity v(n, T ) = N(τ(n, T ); n, T ) (recall Equation (8))

that

vT (n, T ) = Ṅ(τ ∗; n, T )τT (n, T ) + NT (τ ∗; n, T ). (A.7)

Lemma A.3.

τT (nT , T ) = 1 and vT (nT , T ) = 0. (A.8)

Proof. Suppose that τ ∗ = T . Clearly τT (nT , T ) = 1, since τ ∗ = τ(nT , T ) = T by

assumption. Furthermore, since the differential equation in Equation (2) is autonomous,

it holds that

N(t; nT , T ) = N(t − T ; nT , 0). (A.9)

Therefore

NT (t; nT , T ) = Ṅ(t − T ; nT , 0) · (−1) = −Ṅ(t; nT , T ) (A.10)
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for all t ∈ [T, ∞). This, Equation (A.7) and τT (nT , T ) = 1 imply that vT (nT , T ) = 0.

Suppose that τ ∗ > T . Condition (7) holds as an equality. Differentiating it with

respect to variable T one obtains the following equation:

D′(N(τ ∗; nT , T ))
[

Ṅ(τ ∗; nT , T )τT (nT , T ) + NT (τ ∗; nT , T )
]

(A.11)

− rC ′(N(τ ∗; nT , T ))
[

Ṅ(τ ∗; nT , T )τT (nT , T ) + NT (τ ∗; nT , T )
]

(A.12)

− C ′′(N(τ ∗; nT , T ))f(N(τ ∗; nT , T ))
[

Ṅ(τ ∗; nT , T )τT (nT , T ) + NT (τ ∗; nT , T )
]

(A.13)

− C ′(N(τ ∗; nT , T ))f ′(N(τ ∗; nT , T ))
[

Ṅ(τ ∗; nT , T )τT (nT , T ) (A.14)

+ NT (τ ∗; nT , T )
]

= 0. (A.15)

The term Ṅ(τ ∗; nT , T )τT (nT , T ) + NT (τ ∗; nT , T ) forms a common term, and the term,

which multiplies it, is strictly negative by Equation (9). Hence,

τT (nT , T ) = −
NT (τ ∗; nT , T )

Ṅ(τ ∗; nT , T )
, (A.16)

which implies that τT (nT , T ) = 1 since NT (t; nT , T ) = −Ṅ(t; nT , T ) also at t = τ ∗. The

proof that vT (nT , T ) = 0 is when τ ∗ = T .

Proof of Proposition 2:

Proof. Note that by Equation (11) the formula for KT (nT , T ) is

KT (nT , T ) = C ′(v(nT , T ))e−r(τ(n
T

,T )−T )vT (nT , T ) (A.17)

+ C(v(nT , T ))
(

− r(τT (nT , T ) − 1)
)

e−r(τ(n
T

,T )−T ). (A.18)

Lemma A.3 says that τT (nT , T ) = 1 and vT (nT , T ) = 0. Applying these to Equation

(A.17)-(A.18) implies that KT (nT , T ) = 0.
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Differentiating function S in (11) with respect to T gives

ST (n, T ) = VT (n, T )e−rT − rV (n, T )e−rT = e−rT
[

VT (n, T ) − rV (n, T )
]

(A.19)

= e−rT



D(N(T ; n, T )) − D(N(τ(n, T ); n, T ))e−r(τ(n,T )−T )τT (n, T ) (A.20)

+
∫ τ(n,T )

T
−D′(N(t; n, T ))NT (t; n, T )e−r(t−T ) − D(N(t; n, T ))re−r(t−T ) dt

(A.21)

− C ′(v(n, T ))e−r(τ(n,T )−T )vT (n, T ) (A.22)

− C(v(n, T ))
(

− r(τT (n, T ) − 1)
)

e−r(τ(n,T )−T ) (A.23)

− r





∫ τ(n,T )

T
−D(N(t; n, T ))e−r(t−T ) dt − C(v(n, T ))e−r(τ(n,T )−T )







. (A.24)

After canceling terms, one obtains that

ST (n, T ) = e−rT



D(N(T ; n, T )) − D(N(τ(n, T ); n, T ))e−r(τ(n,T )−T )τT (n, T ) (A.25)

+
∫ τ(n,T )

T
−D′(N(t; n, T ))NT (t; n, T )e−r(t−T ) dt (A.26)

− C ′(v(n, T ))e−r(τ(n,T )−T )vT (n, T ) (A.27)

+ rC(v(n, T ))e−r(τ(n,T )−T )τT (n, T )



. (A.28)

Let τ ∗ = T . Then the formula for ST (n, T ), (A.25)-(A.28), evaluated at (nT , T ) gives

after using Lemma A.3

ST (nT , T ) = e−rT



D(nT ) − D(nT ) (A.29)

+
∫ T

T
−D′(N(t; nT , T ))NT (t; nT , T )e−r(t−T ) dt (A.30)

+ rC(v(nT , T ))



. (A.31)

Since v(nT , T ) = nT ,

ST (nT , T ) = rC(nT )e−rT = −rV (nT , T )e−rT . (A.32)

Let τ ∗ > T . By Lemma A.3 τT (nT , T ) = 1 and vT (nT , T ) = 0. Using these, equation
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NT (t; nT , T ) = −Ṅ(t; nT , T ) and the formula for ST (n, T ) give

ST (nT , T ) = e−rT



D(nT ) − D(N(τ(nT , T ); n, T ))e−r(τ(n
T

,T )−T ) (A.33)

+
∫ τ(n

T
,T )

T
−D′(N(t; nT , T ))(−Ṅ(t; nT , T ))e−r(t−T ) dt (A.34)

+ rC(v(nT , T ))e−r(τ(n
T

,T )−T )



. (A.35)

Integrating by parts gives

ST (nT , T ) = e−rT



D(nT ) − D(N(τ(nT , T ); n, T ))e−r(τ(n
T

,T )−T ) (A.36)

+

τ(n
T

,T )
/

T

D(N(t; nT , T ))e−r(t−T ) −
∫ τ(n

T
,T )

T
D(N(t; nT , T ))(−r)e−r(t−T ) dt

(A.37)

+ rC(v(nT , T ))e−r(τ(n
T

,T )−T )



 (A.38)

= e−rT



r
∫ τ(n

T
,T )

T
D(N(t; nT , T ))e−r(t−T ) dt (A.39)

+ rC(v(nT , T ))e−r(τ(n
T

,T )−T )



 (A.40)

= −rV (nT , T )e−rT . (A.41)

A.3 Proof of Proposition 3

The present value Hamiltonian related to this problem is

H(q, X, N, µ, γ, t) = µ0

(

pq − G(q, X) − D(N)
)

e−rt − µq + γ(αq − f(N)). (A.42)
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Theorem 16 in Chapter 6 of Seierstad and Sydsæter (1987) applied.18 The necessary

conditions include the following:

Hq =
(

p − Gq(q, X)
)

e−rt − µ + γα ≤ 0, q ≥ 0, qHq = 0, (A.43)

Ẋ = −q, (A.44)

Ṅ = αq − f(N), (A.45)

µ̇ = GX(q, X)e−rt, (A.46)

γ̇ = D′(N)e−rt + γf ′(N), (A.47)

µ(T ) ≥ 0, X(T ) ≥ 0, µ(T )X(T ) = 0, (A.48)

γ(T ) − Sn(N(T ), T ) ≥ 0, N(T ) ≥ 0, N(T )[γ(T ) − Sn(N(T ), T )] = 0, (A.49)

H(q(T ), X(T ), N(T ), µ(T ), γ(T ), T )

+ ST (N(T ), T )







≤ 0, if T = 0,

= 0, if T > 0.
(A.50)

(i) Suppose that q(T ) > 0. Then
(

p − Gq(q(T, X(T )))
)

e−rT − µ(T ) + γ(T )α = 0 by

(A.43), and

(

pq(T ) − G(q(T ), X(T )) − D(N(T ))
)

e−rT − µ(T )q(T ) + γ(T )(αq(T ) − f(N(T )))

= −ST (N(T ), T ). (A.51)

by (A.50). Combining these equations and simplifying yields the following equation:

q(T )

[

G(q(T ), X(T ))

q(T )
− Gq(q(T ), X(T ))

]

e−rT + e−rT D(N(T )) + γ(T )f(N(T ))

= −rV (N(T ), T )e−rT . (A.52)

The desired equation follows from this.

(ii) Suppose that q(T ) = 0. The desired equation is obtained readily from condition

(A.50).

A.4 Proof of Proposition 4

(i) Equations (19) and (20) follow from Part (i) of Proposition 3 since pollution damage

is absent (set D(N(T )) = 0).

18It is assumed that µ0 = 1.
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(ii) Suppose G(0, X) = 0 for all X. Assume q(T ) > 0. Then

e−rT
(

Gq(q(T ), X(T ))q(T ) − G(q(T )X(T ))
)

=

− ST (N(T ), T ) + γ(T )f(N(T )) < 0, (A.53)

This is not possible with the assumed cost structure. Assume q(T ) = 0. Then (A.50)

implies that 0 = −ST (N(T ), T )+γ(T )f(N(T )), since pollution damages are absent. But

− ST (N(T ), T ) + γ(T )f(N(T )) = rV (N(T ), T )e−rT + γ(T )f(N(T )) ≤ 0, (A.54)

since V ≤ 0, γ(T ) < 0 and f ≥ 0. Therefore f(N(T )) = 0 and V (N(T ), T ) = 0. These

equations are true only if N(T ) = 0. This implies q = 0 for all t.

A.5 Proof of Proposition 5

The present value Hamiltonian related is

H(q, θ, X, B, µ, η, t) =
(

pq − G(q, X) − Γαq
)

(1 − θ)e−rt (A.55)

− µq + η
(

rB + θ(pq − G(q, X) − Γαq)
)

. (A.56)

The necessary conditions include the following:

Hq =
(

p − Gq(q, X) − Γα
)

(1 − θ)e−rt − µ + ηθ(p − Gq(q, X) − Γα) ≤ 0, (A.57)

q ≥ 0, qHq = 0, (A.58)

θ =











0 if − Z(q)e−rt + ηZ(q) < 0,
any θ ∈ [0, 1] if − Z(q)e−rt + ηZ(q) = 0,

1 if − Z(q)e−rt + ηZ(q) > 0,
(A.59)

Ẋ = −q, (A.60)

Ḃ = rB + θ
(

pq − G(q, X) − Γαq
)

, (A.61)

µ̇ = GX(q, X)e−rt, (A.62)

η̇ = −rη, (A.63)

µ(T ∗) ≥ 0, X(T ∗) ≥ 0, µ(T ∗)X(T ∗) = 0, (A.64)

η(T ∗) ”has no condition”. (A.65)

The following lemma is used to show that these conditions match the regulator’s necessary

conditions:
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Lemma A.4. Equation η(t) = e−rt holds for a profitable project that collects sufficient

amount of money to cover the reclamation costs.

Proof. Let the project be profitable and suppose that the terminal condition in (24) is

met. Equation (A.63) implies that η(t) = ke−rt for some real number k. If θ ∈ (0, 1)

maximizes the Hamiltonian, then k = 1 by (A.59). Suppose that the maximizer is on

the boundary of [0, 1]. Since the project has to collect sufficient amount on money to

the bank account, θ = 1, q > 0 and Z(q) > 0 on some interval. Since θ = 1, inequality

Z(q)(ke−rt − e−rt) ≥ 0 holds on that interval. This implies that ke−rt − e−rt ≥ 0 since

Z(q) > 0. Hence k ≥ 1. Similarly, since the project is profitable, there exists an interval

on which θ = 0, q > 0 and Z(q) > 0. On that interval inequality Z(q)(ke−rt − e−rt) ≤ 0

holds and therefore k ≤ 1. Hence k = 1.

Lemma A.4 together with the optimal regulation T ∗, K(N∗(T ∗), T ∗) and Γ(t) =

−γ(t)ert implies that conditions (A.57), (A.58), (A.60), (A.62) and (A.64) become

Hq =
(

p − Gq(q, X)
)

e−rt − µ + γα ≤ 0, q ≥ 0, qHq = 0, (A.66)

Ẋ = −q, µ̇ = GX(q, X)e−rt, (A.67)

µ(T ∗) ≥ 0, X(T ∗) ≥ 0, µ(T ∗)X(T ∗) = 0. (A.68)

These conditions match conditions (A.43), (A.44), (A.46) and (A.48) of the social opti-

mum. These are independent of η and B. In addition, the regulation (Γ and T ∗) has

been chosen such that it satisfies conditions (A.45), (A.47), (A.49) and (A.50). Hence,

the producer’s choice of extraction coincides with the socially optimal extraction and also

produces the socially optimal paths for the state variables X and N . Condition (A.59)

guarantees that any path with θ ∈ [0, 1] such that the end-point constraint in (24) holds

is sufficient for social optimum.
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